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lonic conductivity in the air cathode of a polymer electrolyte membi@teM) fuel cell changes with distance depending on the
ionomer loadindJ. Electrochem. Soc150 A1440(2003]. When the ionic conductivity changes with distance inside a porous
electrode, existing models in the literature fail to capture the behavior of porous electrodes. In this paper, we show how existing
models in the literature can be modified to take care of varying ionic conductivity. The modified model is shown to be efficient in
handling mathematical singularity arising from the distribution of ionic conductivity inside a porous electrode. In addition, the
model developed was used to optimize the functionality of ionic conductiisgtyomer loading to minimize the ohmic drop

across a porous electrode. It is shown that depending on the system parameters, there might be an optimum way to distribute the
ionomer loading inside the PEM fuel cell cathode.
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Macroscopic models based on porous electrode theory have beehe Faraday’s constai(96,487 C/mo), R is the universal gas con-
used to model, analyze, and simulate various electrochemical powestant, andT is the temperature in Kelvin. Combining Eq. 1 and 2,
sources(batteries, fuel cells, capacitors® These modefs® are  the governing equation for the electrolyte potential is obtained as
used for different purposes, including understanding the physics,
predicting the experimental data, optimizing systems parameters, d?®, dkdd, aigF
predicting thermal behavior, optimizing cell design, etc. Of late, AR + dx dx T RT 2 (3]
macroscopic models have been used to model, simulate, and analyze
ac impedance data of batteries and polymer electrolyte membranghe conductivityx, changes with distance and is taken as a product
(PEM) fuel cells>"'***Some researchers have used these modelsf the effective ionic conductivitk, and a distribution functiofi(x)
to estimate transport and kinetic parameters and ac impedance
models!® K = Kof (X) [4]

Recently, Gucet al®t analyzed ac impedance response of PEM
fuel cell cathode for different distributions of ionomer loading. They Substituting Eq. 4 in 3 we get
assumed that the ionic conductivity inside the cathode varies as a ) )
product of effective ionic conductivitky and the distribution func- K f(x)& Fr df(x) d®, - aigk (5]
tion f(x) = x. For the functionality assumed by them, a mathemati- M % dx dx | RT 2
cal singularity occurs in the boundary condititat the current col- ) ) ) )
lector, x = 0). In this paper, we present an alternate method of At the current collector the applied current is car.rled by solid phase
solving the problem by handling the singularity. The later part of the (électrolyte current =) hence the potential gradient was taken as
paper presents a method to find an optimum conductivity profile forZ€ro by Gucet al:
minimizing the ohmic drop across the porous electrode.

dd,
x=0, -fx)—==0
Mathematical Model dx

The cathode region of a PEM fuel cell is modeled in this paper. At the porous electrode/electrolyte interface, the applied current

The geometry modeled is shown in Fig.1 The following assump-  is carried by the electrolytéEq. 1 and 4, Guet aI.Sl)
tions are made(i) the solid-phase potential is constant and zé&irp;

(6]

linear kinetics is valid, which is especially true for the case of ac db,
impedance and high values of exchange current den@iity;con- x=L - kof(x)a = lapp (7]
centration gradients are absent; diwl the process is assumed to be
at steady state. ) In our paper, the distribution functiof(x) is taken as
The electrolyte current is governed by Ohm'’s taw
i dd, 1] f(x) = (1 +n)x" (8]
= —K—
2 dx The distribution functiorf(x) is taken in such a way that the average

wherei, is the electrolyte current densit, is the electrolyte phase  Of f(x) is 1 and the average conductivity &, irrespective of the
potential, is the ionic conductivity, and is the distance from the ~ value ofn. In Fig. 2,f(x) is plotted for different values af.
current collector. Assuming linear kinetics, the gradient of current ~ Equation 5 can be solved with the boundary conditidBg. 6

density is given by and 7 for the electrolyte potential. However, we observe that in Eq.
. . 6 if f(x) = 0 atx = 0 (as in Eqg. 8 thendd,/dx may or may not be
diz = _ﬂq)z [2] zero. Becausé(x) = 0 in Eqg. 6, boundary condition Eq. 6 is true
dx RT irrespective of the value of the potential gradient. Equation 6 is

where a is the surface area per unit volume, Zon?, i is the always satisfied and cannot be used as a boundary condition for the
exchange current density of the rate_determining Step’ A/ﬁns e|eCtr0|yte pOtentiakDZ. In thIS Situation, we haVe a CondUCtiVity
distribution which forcesf(x) = 0 in Eq. 6. Alternatively, in this
paper we solve for the electrolyte current density instead of solving
" ) . for the electrolyte potentiald,. Electrolyte current is given by
ok Elzﬁﬁgﬁﬂiﬂﬁgl 232:2{{, ﬁiﬁﬂi”ﬁﬂ“e",ﬁ?:}er Ohm's law(Eg. 1). Differentiating Eq. 2 and eliminating the poten-
Z E-mail: vsubramanian@tntech.edu tial gradient from Eq. 1 and 2 we obtain
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Figure 1. The geometry which is being modeled. The diagram shows that at
boundaryx = 0 we have the current collector/porous electrode interface, and dx?

at boundaryx = L we have the porous electrode/electrolyte interface.

d?, ( aigF )
fX)— = i 9
0’5 RTko/ 2 Lo}
At the current collector the electrolyte phase current is zero
i,=0atx=0 [10]

At the porous electrode/electrolyte interface the applied current is

carried by the electrolyte

A985
d?l,
f(X)@ -v1,=0 [13]
wherev? is the dimensionless current density and is given by
aigFL?
2= [14]
RTkq
Now the boundary conditions are
1,00=0 [15]
(1) =1 [16]

In the governing equatiofEg. 13, f(X) in general takes the form

(n + 1)X". The governing equation, Eq. 13, can now be rewritten as
d?15(X) _ v15(X) _

Xn+1)

[17]

The general solution to the governing equation, Eq. 17, is giv@n by

2
24— L _x-n2)
1 n+1

1,(X) = c;VXBessel| - -

2+n -2+n
2
24— Y xa-n2)
= 1 n+1
+ Cc,VXBesseY| - ,
-2+n -2+n

(18]

Depending on the values of the constants; andc, can be solved

2
24— Y _xa-n2)
1 n+1

iy = iappatx = L [11]
For convenience, the following dimensionless variables are intro-Using boundary conditions 15 and 16
duced
i X aigFL
= =5 X=5; W, = —2—d, [12]
Tapp L RTiypp

wherel, is the dimensionless electrolyte current densityis the

dimensionless distance, aid is the dimensionless electrolyte po-
tential. The governing equatiqiEq. 9 can be rewritten in terms of

dimensionless variables as

f(x)- distribution function

0 02 04 0% 08
Distance (Position in the system), x

Figure 2. The distribution functionf(x) which is (n + 1)x" is plotted as a
function of distancéposition in the systeinx. The averagd(x) was 1.

\&Bessel -

-2+n’ -2+n
1,(X) = = n<?2
v
2 —
1 n+1
Bessel| - ,
-2+n -2+n
[19]
and
’XBessek 2v
VABESSER| Z 2 +n Jn+ 1xC102)
15(X) = 2 n>2 [20]
v
BesselK( , ¥>
-2+n\yn+1

Forn = 0, both Eq. 19 and 20 reduce to the expected expression for
constant conductivity

sinh(vX)
sinh(v)

From the solution for the electrolyte current dendigX), we can
find the electrolyte potential’,(X) using the following equation

[5(X)n=0 = [21]

= W,(X) [22]

Results and Discussion

In Fig. 3, dimensionless electrolyte current density distribution is
plotted for different values of exponent Whenn is 0 or 1, the
profile is almost linear and asincreases we observe a steep gradi-
ent in the distribution of current density. In Fig. 4, dimensionless
electrolyte potential is plotted as a function of dimensionless dis-
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Figure 3. Current density distribution. The dimensionless current density is ) ) ) ) ) ) )
plotted as a function of dimensionless distafie. Figure 5. Dimensionless potential flux as a function of dimensionless dis-
tance(position in the systei(X).

tance(X), from the current collector for different values of exponent

n. Whenn = 3, the electrolyte potential is equal to zeroxat 0 and sty v increases, the dimensionless electrolyte current density be-

for other values of it is nonzero ax = 0. ~comes more nonuniform. Dimensionless electrolyte potential is plot-
Dimensionless potential gradient in Fig. 5 is plotted as a functionted as a function of dimensionless distantéor differentv for a

of dimensionless distanc¥ for different values of exponemn. particular value ofr (n = 1) in Fig. 7. Asv increases, the distribu-
values ofn. Electrolyte potential gradient is not zero for other values tential is plotted as a function of the dimensionless distance in Fig.
of n, and this means that we cannot make the assumption that pa with a constant case of dimensionless electrolyte exchange current
t_ential gradi_ent is zero when ionic conductivity changes as a funC'densityv (v = 1) for varying values of. It is interesting to observe
tion of X. This shows that we cannot use Eq. 6 to model electrolytethat the change in dimensionless electrolyte potential across the di-

potential. o . mensionless distancé increases as increasegthe lines become
Dimensionless electrolyte current density is plotted as a functiongieepey.

of dimensionless distancé for different values ofv in Fig. 6. We
observe that as the dimensionless electrolyte exchange current den-
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Figure 6. Plot of dimensionless electrolyte current density as a function of
Figure 4. Potential distribution. The dimensionless potential is plotted as a dimensionless distandgosition in the systein(X) for a constant value af
function of dimensionless distan¢X). (n=1) and varying values ob.
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) ) ) ) ) ) Figure 8. Plot of dimensionless electrolyte potential as a function of dimen-
Figure 7. Plot of dimensionless electrolyte potential as a function of dimen- sjonless distancéposition in the systein(X) for a constant value o (v
sionless distancéposition in the systein(X) for a constant value ofi (n = 1) and varying values ofi. The shape of the curve dependsron

= 1) and varying values ob.

Optimum Conductivity Profile or lengthL as defined in Eq. D4 and comparison of experiments

L L . with the model developed in this paper will be communicated later.
If our objective is to minimize the ohmic drop across the elec-

trode we can calculate it using the expression

ohmic drop = ab@&V, -1 = V5 ,-0) [23] ) ) )

. . . . ' o . In this paper, an alternate method is presented to obtain the po-
Dimensionless ohmic drop is plotted as a functioméér particular  tentjal and current density distributions for porous electrodes with
value ofv (i.e., 0.1 and 1in Fig. 9. We observe that for a particular - space-varying ionic conductivity. The method presented handles the
value of system parameter v = 1, there might be a minimum for  jnherent singularity in one of the boundary conditions. The govern-
the ohmic drop, and, foo = 0.1, we don’t observe a minima. We  ing equations to be solved for are written in terms of the electrolyte

conclude that depending on the system parameters, there might kgrrent density,. A method to find the optimum conductivity profile
an optimum conductivity profile to minimize the ohmic drop. Note s also presented.

that the functiorf(x) was chosen such that irrespective of the value  Future work includes similar models for lithium-ion batteries es-
of n, the average conductivity remains the same and is equaj.to  pecially during high discharge rates when the electrolyte concentra-
For a given averag&, and a given value ob we can find an  tion approaches zero. It will be more efficient to simulate for the
optimumn based on which we may be able to load the ionomer. electrolyte current densitiy, instead of the electrolyte potenti&b,
Currently we are doing experiments in which membrane is loadedbecause we are avoiding the mathematical singularity. Only linear
for different values oh in Eq. 8 to optimize the ohmic drop across kinetics is assumed in this paper; Butler-Volmer kinetics will be
the membranénote that can be changed by changing the thickness included for more practical applications.

Conclusions

08 08

Figure 9. Plot of dimensionless ohmic
06 06 drop as a function of exponentin f(X)
=(n+ 1)X" for a constant value ob (v
=1 andv = 0.1). The shape of the curve
04 04 depends om.
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Exponent n in f(x) = (1+n)X"
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In this paper we have modeled just the electrolyte phase without 9
other processes. The next step is to use a rigorous model in which 10
will be solved instead ofb,. This approach will be extended for 7

modeling ac impedance in the future. 12.
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